Skip to main content

Advertisement

Log in

Carbon and Nitrogen Stocks and Burial Rates in Intertidal Vegetated Habitats of a Mesotidal Coastal Lagoon

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Coastal vegetated ecosystems such as saltmarshes and seagrasses are important sinks of organic carbon (OC) and total nitrogen (TN), with large global and local variability, driven by the confluence of many physical and ecological factors. Here we show that sedimentary OC and TN stocks of intertidal saltmarsh (Sporobolus maritimus) and seagrass (Zostera noltei) habitats increased between two- and fourfold along a decreasing flow velocity gradient in Ria Formosa lagoon (south Portugal). A similar twofold increase was also observed for OC and TN burial rates of S. maritimus and of almost one order of magnitude for Z. noltei. Stable isotope mixing models identify allochthonous particulate organic matter as the main source to the sedimentary pools in both habitats (39–68%). This is the second estimate of OC stocks and the first of OC burial rates in Z. noltei, a small, fast-growing species that is widely distributed in Europe (41,000 ha) and which area is presently expanding (8600 ha in 2000s). Its wide range of OC stocks (29–99 Mg ha−1) and burial rates (15–122 g m2 y−1) observed in Ria Formosa highlight the importance of investigating the drivers of such variability to develop global blue carbon models. The TN stocks (7–11 Mg ha−1) and burial rates (2–4 g m−2 y−1) of Z. noltei were generally higher than seagrasses elsewhere. The OC and TN stocks (29–101 and 3–11 Mg ha−1, respectively) and burial rates (19–39 and 3–5 g m−2 y−1) in S. maritimus saltmarshes are generally lower than those located in estuaries subjected to larger accumulation of terrestrial organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aoki LR, McGlathery KJ, Oreska MPJ. 2019. Seagrass restoration reestablishes the coastal nitrogen filter through enhanced burial. Limnol Oceanogr 65:1–12.

    Google Scholar 

  • Appleby PG, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8.

    CAS  Google Scholar 

  • Arias-Ortiz A. 2019. Carbon sequestration rates in coastal blue carbon ecosystems: a perspective on climate change mitigation. Ph.D. Thesis, Universitat Autonoma de Barcelona, 227 p.

  • Arias-Ortiz A, Masqué P, Garcia-Orellana J, Serrano O, Mazarrasa I, Marbà N, Lovelock CE, Lavery PS, Duarte CM. 2018. Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems—setting the record straight. Biogeosciences 15:6791–6818.

    CAS  Google Scholar 

  • Bergamaschi BA, Tsamakis E, Keil RG, Eglinton TI, Montluçon DB, Hedges JI. 1997. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochem Cosmochim Acta 61:1247–1260.

    CAS  Google Scholar 

  • Bouma TJ, Vries MD, Low E, Kusters L, Herman PMJ, Tanczos IC, Temmerman S, Hesselink A, Meire P, Van Regenmortel S. 2005. Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia 540(1–3):259–274.

    Google Scholar 

  • Bulmer RH, Schwendenmann L, Lundquist CJ. 2016. Carbon and nitrogen stocks and below-ground allometry in temperate mangroves. Front Mar Sci 3:150.

    Google Scholar 

  • Burdige DJ. 2007. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485.

    CAS  PubMed  Google Scholar 

  • Cabaço S, Alexandre A, Santos R. 2005. Population-level effects of clam harvesting on the seagrass Zostera noltii. Mar Ecol Progr Ser 298:123–129.

    Google Scholar 

  • Carrasco AR, Plomaritis T, Reyns J, Ferreira O, Roelvink D. 2018. Tide circulation patterns in a coastal lagoon under sea-level rise. Ocean Dyn 68:1121–1139.

    Google Scholar 

  • Cheng N, Emadzadeh A. 2017. Laboratory measurements of vortex-induced sediment pickup rates. Int J Sedim Res 32:98–104.

    Google Scholar 

  • Christiansen T, Wiberg PL, Milligan TG. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuar Coast Shelf Sci 50:315–331.

    Google Scholar 

  • Craven KF, Edwards RJ, Flood RP. 2017. Source organic matter analysis of saltmarsh sediments using SIAR and its application in relative sea-level studies in regions of C4 plant invasion. Boreas 46:642–654.

    Google Scholar 

  • Cunha AH, Assis JF, Serrão E. 2013. Seagrasses in Portugal: a most endangered marine habitat. Aquat Bot 104:193–203.

    Google Scholar 

  • Curado G, Rubio-Casal AE, Figueroa E, Grewell BJ, Castillo JM. 2013. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes. Environ Monit Assess 185:8439–8449.

    CAS  PubMed  Google Scholar 

  • Dahl M, Deyanova D, Gütschow S, Asplund ME, Lyimo LD, Karamfilov V, Santos R, Björk M, Gullström M. 2016. Sediment properties as important predictors of carbon storage in Zostera marina meadows: a comparison of four European areas. PLoS ONE 11(12):e0167493.

    PubMed  PubMed Central  Google Scholar 

  • Dahl M, Infantes E, Clevesjö R, Linderholm HW, Björk M, Gullström M. 2018. Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: insights from a flume experiment. Limnol Oceanogr 63(6):2793–2805.

    CAS  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490(7420):388–392.

    CAS  PubMed  Google Scholar 

  • de los Santos C, Onoda Y, Vergara J, Pérez-Lloréns J, Bouma T, La Nafie Y, Cambridge M, Brun F. 2016. A comprehensive analysis of mechanical and morphological traits in temperate and tropical seagrass species. Mar Ecol Prog Ser 551:81–94.

    Google Scholar 

  • de los Santos CB, Krause-Jensen D, Alcoverro T, Marbà N, Duarte CM, van Katwijt MM, et al. 2019. Recent trend reversal for declining European seagrass meadows. Nat Commun 10:3356.

    PubMed  PubMed Central  Google Scholar 

  • Duarte CM. 2017. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14:301–310.

    CAS  Google Scholar 

  • Duarte CM, Kennedy H, Marbà N, Hendriks I. 2013. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast Manag 83:32–38.

    Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8.

    CAS  Google Scholar 

  • Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu AR, Leach AM, de Vries W. 2013. Consequences of human modification of the global nitrogen cycle. Philos Trans R Soc B Biol Sci 368(1621):20130116.

    Google Scholar 

  • Eyre BD, Maher DT, Sanders C. 2016. The contribution of denitrification and burial to the nitrogen budgets of three geomorphically distinct Australian estuaries: importance of seagrass habitats. Limnol Oceanogr 61:1144–1156.

    Google Scholar 

  • Ferreira Ó, Matias A, Pacheco A. 2016. The East coast of Algarve: a barrier island dominated coast. Thalass Int J Mar Sci 32:75–85.

    Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick G, Krause-Jensen D, McGlathery KJ, Serrano O. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5(7):505–509.

    CAS  Google Scholar 

  • Friend PL, Ciavola P, Cappucci S, Santos R. 2003. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Contin Shelf Res 23(17–19):1899–1917.

    Google Scholar 

  • Gacia E, Granata TC, Duarte CM. 1999. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65:255–268.

    Google Scholar 

  • Gebrehiwet T, Koretsky CM, Krishnamurthy RV. 2008. Influence of Spartina and Juncus on saltmarsh sediments. III. Organic geochemistry. Chem Geol 255:114–119.

    CAS  Google Scholar 

  • Glew JR, Smol JP, Last WM. 2001. Sediment core collection and extrusion. In: Last WM, Smol JP, Eds. Tracking environmental change using lake sediments. Vol. 1. New York: Springer. pp 73–105.

    Google Scholar 

  • Green A, Chadwick MA, Jones PJS. 2018. Variability of UK seagrass sediment carbon: implications for blue carbon estimates and marine conservation management. PLoS ONE 13:e0204431.

    PubMed  PubMed Central  Google Scholar 

  • Hasegawa N, Hori M, Mukai H. 2008. Seasonal changes in eelgrass functions: current velocity reduction, prevention of sediment resuspension, and control of sediment–water column nutrient flux in relation to eelgrass dynamics. Hydrobiologia 596:387–399.

    CAS  Google Scholar 

  • Hendriks IE, Sintes T, Bouma TJ, Duarte CM. 2008. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Progr Ser 356:163–173.

    Google Scholar 

  • Hyndes GA, Nagelkerken I, Mcleod RJ, Connolly RM, Lavery PS, Vanderklift MA. 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol Rev 89

  • IPCC. 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  • Jacob J, Cardeira S, Rodrigues M, Bruneau N, Azevedo A, Fortunato AB, Rosa M, Cravo A. 2013. Experimental and numerical study of the hydrodynamics of the western sector of Ria Formosa. J Coast Res 65:2011–2016.

    Google Scholar 

  • Jankowska E, Michel LN, Zaborska A, Włodarska-Kowalczuk M. 2016. Sediment carbon sink in low-density temperate eelgrass meadows (Baltic Sea). J Geophys Res Biogeosci 121:2918–2934.

    CAS  Google Scholar 

  • Jiménez-Arias JL, Morris EP, Rubio-de-Inglés MJ, Peralta G, García-Robledo E, Corzo A, Papaspyrou S. 2020. Tidal elevation is the key factor modulating burial rates and composition of organic matter in a coastal wetland with multiple habitats. Sci Total Environ 724:138205.

    PubMed  Google Scholar 

  • Jordan SJ, Stoffer J, Nestlerode JA. 2011. Wetlands as sinks for reactive nitrogen at continental and global scales: a meta-analysis. Ecosystems 14(1):144–155.

    CAS  Google Scholar 

  • Kelleway JJ, Saintilan N, Macreadie PI, Ralph PJ. 2016. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems 19:865–880.

    CAS  Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ. 2010. Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cycles 24(4):GB4026.

    Google Scholar 

  • Kindeberg T, Ørberg SB, Röhr ME, Holmer M, Krause-Jensen D. 2018. Sediment stocks of carbon, nitrogen, and phosphorus in Danish eelgrass meadows. Front Mar Sci 5:474.

    Google Scholar 

  • Koho KA, Nierop KGJ, Moodley L, Middelburg JJ, Pozzato L, Soetaert K, van der Plicht J, Reichart GJ. 2013. Microbial bioavailability regulates organic matter preservation in marine sediments. Biogeosciences 10:1131–1141.

    Google Scholar 

  • Krishnaswamy S, Lal D, Martin JM, Meybeck M. 1971. Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414.

    CAS  Google Scholar 

  • Lavery PS, Mateo M-Á, Serrano O, Rozaimi M. 2013. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8:e73748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machás R, Santos R, Peterson B. 2003. Tracing the flow of organic matter from primary producers to filter feeders in Ria Formosa lagoon, Southern Portugal. Estuaries 26(4):846–856.

    Google Scholar 

  • Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, et al. 2019. The future of blue carbon science. Nat Commun 10:1–13.

    Google Scholar 

  • Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ. 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows—a critical assessment. Mar Pollut Bull 83(2):430–439.

    CAS  PubMed  Google Scholar 

  • Macreadie PI, Ollivier QR, Kelleway JJ, Serrano O, Carnell PE, Ewers Lewis C, Atwood TB, Sanderman J, Baldock J, Connolly RM, Duarte CM, Lavery PS, Lovelock CE. 2017. Carbon sequestration by Australian tidal marshes. Sci Rep 7:44071.

    PubMed  PubMed Central  Google Scholar 

  • Malta EJ, Stigter TY, Pacheco A, Dill AC, Tavares D, Santos R. 2017. Effects of external nutrient sources and extreme weather events on the nutrient budget of a southern European coastal lagoon. Estuaries Coasts 40(2):419–436.

    CAS  Google Scholar 

  • Mateo MA, Romero J, Pérez M, Littler MM, Littler DS. 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean SeagrassPosidonia oceanica. Estuar Coast Shelf Sci 44:103–110.

    Google Scholar 

  • Mazarrasa I, Marbà N, Garcia-Orellana J, Masqué P, Arias-Ortiz A, Duarte CM. 2017. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows. Limnol Oceanogr 62(4):1436–1450.

    CAS  Google Scholar 

  • Mazarrasa I, Samper-Villarreal J, Serrano O, Lavery PS, Lovelock CE, Marbà N, Duarte CM, Cortés J. 2018. Habitat characteristics provide insights of carbon storage in seagrass meadows. Mar Pollut Bull 134:106–117.

    CAS  PubMed  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560.

    Google Scholar 

  • Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Adachi H, Yamano H, Nakaoka M. 2015. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Glob Biogeochem Cycles 29(4):397–415.

    CAS  Google Scholar 

  • Moki H, Taguchi K, Nakagawa Y, Montani S, Kuwae T. 2020. Spatial and seasonal impacts of submerged aquatic vegetation (SAV) drag force on hydrodynamics in shallow waters. J Mar Syst 209:103373.

    Google Scholar 

  • Murray NJ, Phinn SR, DeWitt M, Ferrari R, Johnston R, Lyons MB, Clinton N, Thau D, Fuller RA. 2019. The global distribution and trajectory of tidal flats. Nature 565(7738):222–225.

    CAS  PubMed  Google Scholar 

  • Nellemann C, Corcoran E, Duarte C, Valdes L, De Young C, Fonseca L, Grimsditch G. 2009. Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme. Nellemann C, Corcoran E, Duarte C, Valdes L, De Young C, Fonseca L, Grimsditch G, editors. GRID-Arendal.

  • Noll A, Mobilian C, Craft C. 2019. Five decades of wetland soil development of a constructed tidal salt marsh, North Carolina, USA. Ecol Restor 37:163–170.

    Google Scholar 

  • Ouyang X, Lee SY. 2014. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11:5057–5071.

    Google Scholar 

  • Pacheco A, Ferreira Ó, Williams JJ. 2011. Long-term morphological impacts of the opening of a new inlet on a multiple inlet system. Earth Surf Process Landf 36:1726–1735.

    Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL. 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3):e9672. https://doi.org/10.1371/journal.pone.0009672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parnell A. 2019. simmr: a stable isotope mixing model. https://cran.r-project.org/web/packages/simmr/index.html.

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS ONE 7(9):e43542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prentice C, Poppe KL, Lutz M, Murray E, Stephens TA, Spooner A, Hessing-Lewis M, Sanders-Smith R, Rybczyk JM, et al. 2020. A synthesis of blue carbon stocks, sources, and accumulation rates in eelgrass (Zostera marina) meadows in the Northeast Pacific. Glob Biogeochem Cycles 4(2):e2019GB006345.

    Google Scholar 

  • R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

  • Ricart AM, York PH, Bryant CV, Rasheed MA, Ierodiaconou D, Macreadie PI. 2020. High variability of Blue Carbon storage in seagrass meadows at the estuary scale. Sci Rep 10(1):1–12.

    Google Scholar 

  • Ricart AM, York PH, Rasheed MA, Pérez M, Romero J, Bryant CV, Macreadie PI. 2015. Variability of sedimentary organic carbon in patchy seagrass landscapes. Mar Pollut Bull 100:476–482.

    CAS  PubMed  Google Scholar 

  • Röhr ME, Boström C, Canal-Vergés P, Holmer M. 2016. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows. Biogeosciences 13(22):6139–6153.

    Google Scholar 

  • Röhr ME, Holmer M, Baum JK, Björk M, Boyer K, Chin D, Chalifour L, Cimon S, Cusson M, Dahl M, et al. 2018. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows. Glob Biogeochem Cycles 32(10):1457–1475.

    Google Scholar 

  • Saderne V, Cusack M, Serrano O, Almahasheer H, Krishnakumar PK, Rabaoui L, Qurban MA, Duarte CM. 2020. Role of vegetated coastal ecosystems as nitrogen and phosphorous filters and sinks in the coasts of Saudi Arabia. Environ Res Lett 15(3):034058.

    CAS  Google Scholar 

  • Samper-Villarreal J, Lovelock CE, Saunders MI, Roelfsema C, Mumby PJ. 2016. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol Oceanogr 61:938–952.

    Google Scholar 

  • Sánchez-Cabeza J, Masqué P, Ani-Ragolta I. 1998. 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227(1–2):19–22.

    Google Scholar 

  • Santos R, Duque-Núñez N, de los Santos CB, Martins M, Carrasco AR, Veiga-Pires C. . 2019. Superficial sedimentary stocks and sources of carbon and nitrogen in coastal vegetated assemblages along a flow gradient. Sci Rep 9(1):1–11.

    PubMed  PubMed Central  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.

    CAS  PubMed  Google Scholar 

  • Serrano O, Lavery PS, Duarte CM, Kendrick GA, Calfat A, York PH, Steven A, Macreadie PI. 2016a. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? Biogeosciences 13:4915–4926.

    CAS  Google Scholar 

  • Serrano O, Almahasheer H, Duarte CM, Irigoien X. 2018. Carbon stocks and accumulation rates in Red Sea seagrass meadows. Sci Rep 8:15037.

    PubMed  PubMed Central  Google Scholar 

  • Serrano O, Lavery PS, Rozaimi M, Mateo MÁ. 2014. Influence of water depth on the carbon sequestration capacity of seagrasses. Glob Biogeochem Cycles 28:950–961.

    CAS  Google Scholar 

  • Serrano O, Lovelock CE, B. Atwood T, Macreadie PI, Canto R, Phinn S, Arias-Ortiz A, Bai L, Baldock J, Bedulli C, et al. 2019. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat Commun 10:1–10.

  • Serrano O, Ricart AM, Lavery PS, Mateo MA, Arias-Ortiz A, Masque P, Rozaimi M, Steven A, Duarte CM. 2016b. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows. Biogeosciences 13:4581–4594.

    CAS  Google Scholar 

  • Shan Y, Zhao T, Liu C, Nepf H. 2020. Turbulence and bed load transport in channels with randomly distributed emergent patches of model vegetation. Geophys Res Lett 47:e2020GL087055.

    Google Scholar 

  • Silva J, Santos R. 2004. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii? J Exp Mar Biol Ecol 307:207–216.

    CAS  Google Scholar 

  • Sousa AI, Lillebø AI, Caçador I, Pardal MA. 2008. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environ Pollut 156:628–635.

    CAS  PubMed  Google Scholar 

  • Sousa AI, Santos DB, Da Silva EF, Sousa LP, Cleary DF, Soares AM, Lillebø AI. 2017. ‘Blue carbon’and nutrient stocks of salt marshes at a temperate coastal lagoon (Ria de Aveiro, Portugal). Sci Rep 7(1):1–11.

    Google Scholar 

  • Tempest JA, Möller I, Spencer T. 2015. A review of plant-flow interactions on salt marshes: the importance of vegetation structure and plant mechanical characteristics: salt marsh plant-flow interactions. Wires Water 2:669–681.

    Google Scholar 

  • Terrados J, Duarte CM. 2000. Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow. J Exp Mar Biol Ecol 243:45–53. https://linkinghub.elsevier.com/retrieve/pii/S0022098199001100

  • Yager EM, Schmeeckle MW. 2013. The influence of vegetation on turbulence and bed load transport: VEGETATION, TURBULENCE, BED LOAD FLUX. J Geophys Res Earth Surf 118:1585–1601.

    Google Scholar 

  • Yang JQ, Nepf HM. 2018. A turbulence-based bed-load transport model for bare and vegetated channels. Geophys Res Lett 45:10,428-10,436. https://doi.org/10.1029/2018GL079319.

    Article  Google Scholar 

  • Zhang X, Nepf H. 2021. Wave-induced reconfiguration of and drag on marsh plants. J Fluids Struct 100:103192.

    Google Scholar 

  • Zhou J, Wu Y, Zhang J, Kang Q, Liu Z. 2006. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere 65:310–317.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Foundation of Science and Technology of Portugal (FCT) funded this work through projects PTDC/MAR-EST/3223/2014, PTDC/MAR-EST/1031/2014, UIDP/00350/2020 and UIDB/04326/2020. C.B.d.l.S. was supported by FCT fellowship SFRH/BPD/119344/2016 and A.R.C. by FCT under the DL 57/2016/CP1361/CT0002. Funding was provided to P.M. by the Generalitat de Catalunya (Grant 2017 SGR-1588) and through an Australian Research Council LIEF Project (LE170100219). This work is contributing to the Institut de Ciència i Tecnologia Ambientals (ICTA) “Unit of Excellence” (MinECo, MDM2015-0552). The International Atomic Energy Agency (IAEA) is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco. We thank A. Silva, J. Dupont and C. Freitas for the assistance in the field and laboratory work and the Olhão Marina/Verbos do Cais, S.A. for their support in the use of the marina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author contributions: MM: Methodology, Formal analysis, Investigation, Data curation, Visualization, Writing - original draft. CBdlS: Methodology, Supervision, Investigation, Writing—review and editing. RS: Conceptualization, Supervision, Methodology, Funding acquisition, Resources, Writing—review and editing. CV-P: Conceptualization, Supervision, Methodology, Resources, Writing—review and editing. PM: Methodology, Formal analysis, Resources, Writing—review and editing. ARC: Methodology, Funding acquisition, Resources, Writing—review and editing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1019 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M., de los Santos, C.B., Masqué, P. et al. Carbon and Nitrogen Stocks and Burial Rates in Intertidal Vegetated Habitats of a Mesotidal Coastal Lagoon. Ecosystems 25, 372–386 (2022). https://doi.org/10.1007/s10021-021-00660-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00660-6

Keywords

Navigation